5.4: Classification of Singularities (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    76226
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The portion

    \(\begin{eqnarray}\label{principal}
    \frac{b_1}{z-z_0}+\frac{b_2}{(z-z_0)^2}+\frac{b_3}{(z-z_0)^3}+\cdots
    \end{eqnarray}\)

    of theLaurent series, involving negative powers of\(z−z_0,\), is called theprincipal partof\(z−z_0,\)at \(z_0\). The coefficient\(b_1\)in equation (1), turns out to play a very special role in complex analysis. It is given a special name: theresidueof the function\(f(z)\). In this section we will focus on the principal part to identify the isolated singular point\(z_0\)as one of three special types.

    Poles

    If the principal part of\(f\)at\(z_0\)contains at least one nonzero term but the number of such terms is only finite, then there exists a integer\(m≥1\)such that

    \(b_m\neq 0 \quad\text{and} \quad b_{k}=0\quad \text{for}\quad k\gt m.\)

    In this case, the isolated singular point\(z_0\)is called apole of order\(m\). A pole of order\(m=1\)is usually referred to as asimple pole.

    Examples

    Consider the functions

    \(f(z)=\dfrac{e^z-1}{z^2},\qquad g(z)=\frac{\cos z}{z^2}\qquad\text{and}\qquad h(z)=\frac{\sinh z}{z^4},\)

    with an isolated singularity at\(z_0=0\). Figures 1, 2 and 3 show theenhanced phase portraitsof these functions defined in the square\(|\text{Re }z|\lt 3\)and\(|\text{Im }z|\lt 3\).

    5.4: Classification of Singularities (2)
    5.4: Classification of Singularities (3)
    5.4: Classification of Singularities (4)

    Now from theenhanced phase portraitswe can observe that\(z_0=0\)is in fact a pole which order can also be easily seen, it is just the number of isochromatic rays of one (arbitrarily chosen) color which meet at that point. Thus we can claim that\(f\),\(g\)andhhhave poles of order 1, 2 and 3; respectively. To confirm this let’s calculate the Laurent series representation centred at\(0\). First observe that

    \(\begin{eqnarray*}
    f(z)&=&\frac{1}{z^2}\left[ \left( 1 + z + \frac{z^2}{2!}+\cdots \right) - 1 \right]\\
    &=&\frac{1}{z}
    +\frac{1}{2!}+\frac{z}{3!}+\frac{z^2}{4!}+\cdots, \quad (0\lt|z|\lt\infty).
    \end{eqnarray*}\)

    Thus we can see that\(f\)has a simple pole. On the other hand

    \(\begin{eqnarray*}
    g(z)&=&\frac{1}{z^2}\left(1-\frac{z^2}{2!}+\frac{z^4}{4!}-\cdots
    \right)\\
    &=&\frac{1}{z^2}-\frac{1}{2!}+\frac{z^2}{4!}-\cdots, \quad (0\lt|z|\lt\infty)
    \end{eqnarray*}
    \)

    thengghas a pole of order 2. Finally,\(h\)has a pole of order 3 since

    \(\begin{eqnarray*}
    h(z)&=&\frac{1}{z^4}\left(z+\frac{z^3}{3!}+\frac{z^5}{5!}+\cdots \right)\\
    &=&\frac{1}{z^3}+\frac{1}{3!}\cdot
    \frac{1}{z}+\frac{z}{5!}+\frac{z^3}{7!}+\cdots, \quad(0\lt|z|\lt\infty).
    \end{eqnarray*}
    \)

    Removable singularity

    When every\(b_n\)is zero, so that

    \(\begin{eqnarray}\label{residue003}
    f(z)=\sum_{n=0}^{\infty} a_n(z-z_0)^n,\quad (0\lt |z-z_0| \lt R_2).
    \end{eqnarray}\)

    In this case,\(z_0\)is known as aremovable singular point. Note that the residue at a removable singular point is always zero. If we define, or possibly redefine,\(f\)at\(z_0\)so that\(f(z_0) = a_0\), expansion (2) becomes valid throughout the entire disk\(|z - z_0| \lt R_2\). Since a power series always represents an analytic function interior to its circle of convergence, it follows that\(f\)is analytic at\(z_0\)when it is assigned the value\(a_0\)there. The singularity\(z_0\)is, therefore, removed.

    Examples

    Consider the functions

    \(f(z)=\frac{1-\cos z}{z^2},\qquad g(z)=\frac{\sin z}{z}\qquad\text{and}\qquad h(z)=\frac{z}{e^z-1}.\)

    Figure shows the enhanced phase portraits of these functions defined in the square\(|\text{Re }z|\lt 8\) and\(|\text{Im }z|\lt 8\).

    5.4: Classification of Singularities (5)
    5.4: Classification of Singularities (6)
    5.4: Classification of Singularities (7)

    We notice that\(f\)has a singularity at \(z_0=0\)but in this case the plot does not show isochromatic lines meeting at that point. This indicates that the singularity might be removable.

    We can confirm this claim easily from the Laurent series representation:

    \(\begin{eqnarray*}
    f(z)&=&\frac{1}{z^2}\left[1-\left(1-\frac{z^2}{2!}+\frac{z^4}{4!}-\frac{z^6}{6!}+\cdots
    \right)\right]\\
    &=&\frac{1}{2!}-\frac{z^2}{4!}+\frac{z^4}{6!}-\cdots, \quad (0\lt |z|\lt \infty).
    \end{eqnarray*}\)

    In this case, when the value\(f(0)=1/2\)is assigned,\(f\)becomes entire. Furthermore, we can intuitively observe that since\(z=0\)is a removable singular point of\(f\), then\(f\)must be analytic and bounded in some deleted neighbourhood\(0\lt |z|\lt \varepsilon\).

    Exercise \(\PageIndex{1}\)

    Find the Laurent series expansion for\(g\)and\(h\)to confirm that they have removable singularities at\(z_0=0\).

    Essential singularity

    If an infinite number of the coefficients\(b_n\)in the principal part (1) are nonzero, then\(z_0=0\)is said to be anessential singularpoint of\(f\).

    Examples

    The function

    \(f(z)=\exp\left(\frac{1}{z}\right)\)

    has an essential singularity at\(z_0=0\)since

    \(\begin{eqnarray*}
    f(z)&=&1+\frac{1}{1!}\cdot\frac{1}{z}+\frac{1}{2!}\cdot
    \frac{1}{z^2}+\cdots\\
    &=&\sum_{n=0}^{\infty}\frac{1}{n!}\cdot \frac{1}{z^n}, \quad (0\lt |z|\lt \infty).
    \end{eqnarray*}\)

    Figure 7 shows the enhanced portrait of\(f\)in the square\({|\text{Re }z|\lt 0.5}\)and\({|\text{Im }z|\lt 0.5}\). The first thing we notice is that the behaviour of\(f\)near the essential singular point is quite irregular. Observe how the isochromatic lines, near\(z_0=0\), form infinite self-contained figure-eight shapes.

    5.4: Classification of Singularities (8)

    In fact, a neighbourhood of\(z_0=0\)intersects infinitely many isochromatic lines of the phase portrait of one and the same colour [Wegert, 2012, p. 181]. This fact can be appreciated intuitively by plotting the simple phase portrait of\(exp\,(1/z)\)on a smaller region, as shown in Figure 8.

    5.4: Classification of Singularities (9)

    Another example with an essential singularity at the origin is the function

    \(g(z) = (z − 1) \cos\left(\frac{1}{z}\right)\)

    Figure 9 shows the enhanced phase portrait of\(g\)in the square\(|\text{Re } z| \lt 0.3\)and\(|\text{Im } z| \lt 0.3\).

    5.4: Classification of Singularities (10)

    Exercise \(\PageIndex{2}\)

    Find the Laurent series expansion for\((z − 1) \cos\,(1/z)\)to confirm that it has an essential singularity at\(z_0=0\).

    Final remark

    Phase portraits are quite useful to understand the behaviour of functions near isolated singularities. Figures 7 and 9 indicate a rather wild behavior of these functions in a neighbourhood of essential singularities, in comparison with poles and removable singular points. In addition, they can be used to explore and comprehend, from a geometric point of view, more abstract mathematical results such as theGreat Picard Theorem, which tells us that any analytic function with an essential singularity at\(z_0\)takes on all possible complex values (with at most a single exception) infinitely often in any neighbourhood of\(z_0\).

    5.4: Classification of Singularities (11)
    5.4: Classification of Singularities (2024)
    Top Articles
    Free NBA Picks - Expert Basketball Picks For Today’s Games | Pickswise
    Best NRFI Bets Today – No Runs First Inning Picks UPDATED DAILY
    Skigebiet Portillo - Skiurlaub - Skifahren - Testberichte
    Www.paystubportal.com/7-11 Login
    Dairy Queen Lobby Hours
    Minooka Channahon Patch
    Tryst Utah
    Directions To Franklin Mills Mall
    Craftsman M230 Lawn Mower Oil Change
    Vanadium Conan Exiles
    Lichtsignale | Spur H0 | Sortiment | Viessmann Modelltechnik GmbH
    Premier Boating Center Conroe
    FIX: Spacebar, Enter, or Backspace Not Working
    Robot or human?
    Sony E 18-200mm F3.5-6.3 OSS LE Review
    Missed Connections Dayton Ohio
    Dr Adj Redist Cadv Prin Amex Charge
    Webcentral Cuny
    Wicked Local Plymouth Police Log 2022
    Lehmann's Power Equipment
    PowerXL Smokeless Grill- Elektrische Grill - Rookloos & geurloos grillplezier - met... | bol
    Keci News
    Melendez Imports Menu
    How many days until 12 December - Calendarr
    Azur Lane High Efficiency Combat Logistics Plan
    Gas Buddy Prices Near Me Zip Code
    Inkwell, pen rests and nib boxes made of pewter, glass and porcelain.
    Violent Night Showtimes Near Amc Dine-In Menlo Park 12
    Sofia the baddie dog
    Viduthalai Movie Download
    Www.1Tamilmv.con
    Ipcam Telegram Group
    ATM, 3813 N Woodlawn Blvd, Wichita, KS 67220, US - MapQuest
    47 Orchid Varieties: Different Types of Orchids (With Pictures)
    Shaman's Path Puzzle
    Most popular Indian web series of 2022 (so far) as per IMDb: Rocket Boys, Panchayat, Mai in top 10
    Edward Walk In Clinic Plainfield Il
    آدرس جدید بند موویز
    Craigslist West Seneca
    Autozone Locations Near Me
    Hisense Ht5021Kp Manual
    Dmitri Wartranslated
    Blackstone Launchpad Ucf
    Ross Dress For Less Hiring Near Me
    COVID-19/Coronavirus Assistance Programs | FindHelp.org
    Charli D'amelio Bj
    Truck Works Dothan Alabama
    Msatlantathickdream
    Poster & 1600 Autocollants créatifs | Activité facile et ludique | Poppik Stickers
    Used Curio Cabinets For Sale Near Me
    Ff14 Palebloom Kudzu Cloth
    Famous Dave's BBQ Catering, BBQ Catering Packages, Handcrafted Catering, Famous Dave's | Famous Dave's BBQ Restaurant
    Latest Posts
    Article information

    Author: Jerrold Considine

    Last Updated:

    Views: 5501

    Rating: 4.8 / 5 (58 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Jerrold Considine

    Birthday: 1993-11-03

    Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

    Phone: +5816749283868

    Job: Sales Executive

    Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

    Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.